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Abstract

In determining if a set of bivariate data can be accurately modeled by a linear function, one
could use linear regression and the value of R2. Unfortunately, some published resources have
been found to incorrectly interpret a high value of R2 as evidence of a linear relationship between
the variables. Indeed, at times the values of the variables may be independent of each other and
a linear regression may not be appropriate. Herein, using only mathematics from grades 10-
14, we propose a novel measure, Q2, to indicate the measure of linearity of a scatterplot of
points. While Q2 shares many of the properties of R2, Q2 is invariant under rotation, and so is
a more appropriate tool to compare two independent data sets for linearity. Herein, rather than
presenting either Q2 or R2 as superior to the other, we propose the complementary nature of the
two measures and that, by investigating Q2, students can gain deeper understanding of R2. This
paper provides a link to a dynamic applet and instructions to accompany the reading and assist
the reader to further investigate this topic and glean additional insights.

1 Introduction
Let’s say that we are given a scatter plot of bivariate data. We perform a vertical least squares linear
regression on the data set, determine the line of best fit, and find the associated value for R2. We now
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rotate the entire scatter plot about the centroid of the data set, (x̄, ȳ), by an angle θ. The vertical least
squares regression line of the rotated data still passes through the centroid and so is a rotation of the
regression line of the original data. Some immediate observations can be made [2]:

1. The “shape” of the scatter plot has not changed.

2. The rotation angle of the regression line has no direct relationship to θ.

3. The value of R2 changes as the data are rotated.

While these findings may be interesting, one may query when or why one would ever rotate a set
of data. The answer may not be in rotating the data as much as in orienting the data on a coordinate
grid. Let us consider the following scenario:

You’ve lost contact with an unmanned aircraft that has crashed over a flat expanse of
uninhabited land. You need to find a particular artifact from the debris and so you send
a reconnaissance aircraft to take pictures of the debris field of the crash site. However,
the debris field has no natural coordinate system by which to contextualize the location of
each visible piece of debris (data point). In order to determine a reasonable search area for
the artifact, two interconnected ideas come to play: the linearity of the data (of the scatter
plot of the debris field) and the shape of the debris field. If the unmanned aircraft had a
relatively mild angle of descent, the debris field may indeed be quite linear. However, the
selection of one coordinate system on which the data points will be mapped may produce
a least squares regression line with a large R2 value while a different coordinate system
may produce a different regression line with a small R2 value. One must now decide
which coordinate system is best on which to map the debris field. The selection of the
coordinate system and its associated regression line and value for R2 can help to hone in
on possible locations for the artifact.

In this scenario, rotating the coordinate system produces the same effect as keeping the coordinate
system static and rotating the data. Thus, in modeling real world phenomena, rotating the data may
be a valid heuristic. Altogether, these observations lead to some important additional understandings
[2]:

4. R2 is not rotationally invariant and

5. since the “shape” of the scatter plot has not changed - and thus its linearity has not been affected
-R2 cannot be a measure of the linearity of the data, as is improperly reported in some resources
[2].

This immediately leads to the natural question: If R2 is not a measure of the linearity of the
data, then what is? Prior to considering this question, one may ask why we may want a measure of
linearity on a data set. In respect to the debris field, determining the linearity of the data could have
provided hints regarding how wide the crash site should be investigated in order to find the artifact
sans concerns for selecting one particular coordinate system over another.

In an introductory statistics class, students are often asked to perform a linear regression on bivari-
ate data. However, when data is nonlinear, a linear regression may be inappropriate. Preceding the
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practice of performing a linear regression, it may be valuable to employ a test of linearity such as the
Q2 measure developed here. Additionally, understanding Q2 may help students better conceptualize
the meaning and application of R2.

The remainder of this paper develops the measureQ2 which will determine the linearity of a set of
data. Later in this paper, the reader is provided a link to a dynamic applet to further investigate ideas
associated with R2 and Q2. While beyond the scope of this paper, future applications of Q2 may be
determined to meet needs in the areas of pattern recognition and computer science.

2 Initial Statistical Background and the Comparison Line
In addition to measures of central tendency, fitting a line to a scatterplot of data (either by hand
or using technology) is one of the earliest exposures students have to statistics. Connected to the
regression line, students investigate and interpret the coefficient of determination (a measure of how
much error one would expect when using the linear model to make predictions), R2, and the Pearson
correlation coefficient, r, which measures the linear dependence between the two variables x and y.
While the value of R2 has several valid interpretations, for this discussion it is useful to recognize that
R2 can be seen as the percentage reduction in the sum of squared distances by using the regression
line over a comparison line (either a vertical or horizontal line). We now consider this idea in more
detail, and how it leads to a definition of Q2, through three cases:

1. In the case when all errors are in the y-values of a data set, it is appropriate to determine the
vertical regression line and compare the sum of the squares of the vertical distances from the
regression line to the sum of the squares of the vertical distances from the comparison line
y = ȳ . (See Figure 1.)

Figure 1: Vertical Regression

2. Similarly, in the case when all errors are in the x-values of the data, it is appropriate to de-
termine the horizontal regression line and compare the sum of the squares of the horizontal
distances from the regression line to the sum of the squares of the horizontal distances from the
comparison line x = x̄ .
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Prior to considering the other case, it is important to observe a few relationships between the data
errors, the regression line, and the comparison line:

a. The comparison line is perpendicular to the direction of the error in the data.

b. The regression line and the comparison line intersect at the data’s centroid.

In order to develop the measure Q2, we will ensure that the appropriate regression line and the
comparison lines: (a) are perpendicular; (b) intersect at the centroid; and (c) are invariant on the
rotation of the data. These characteristics make the selection quite natural.

3. Some data has recognized possible errors in both x- and y-values. For instance, students are
given a stop watch to measure the distance a ball rolls after descending a ramp. Let us assume
that the x-component of the data is time and the y-component is distance. We readily accept
that there may be some error in our observations of the distance the ball rolled at x seconds.
However, due to the human imprecision of manipulating the stopwatch, there may also be
some error in the actual versus recorded time at any value of x. Based on the authors’ former
experiences in laboratory work, this error could be quite large. Thus, error can be assumed in
both variables.

When we can know that (A) error is in both directions with equal variance or (B) there is no assumable
information regarding error in either direction, it is appropriate to use an orthogonal least squares
regression line, which considers the sum of the squares of the orthogonal distances from the regression
line to the sum of the squares of the orthogonal distances from the line perpendicular to the orthogonal
regression line through the centroid (See Figure 2). It is appropriate to determine the orthogonal
regression line and compare.

Figure 2: Orthogonal Regression

In addition, when there is no natural set of axes, the orthogonal least squares regression line
may also be more appropriate than the traditional vertical linear regression model, since error in a
particular variable may not hold definite meaning. Notably, rotation of the data by angle θ about the
centroid will produce a rotation in the orthogonal regression line by the same angle [2]. However, the
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orthogonal least squares regression line does not have a recognized associated R2 value as a measure
of the goodness of fit of the regression line.

In respect to an orthogonal least squares regression, [1] state that the worst-fit line is perpendicular
to the best-fit line (i.e., orthogonal least squares regression). This means the smallest sum of squared
orthogonal distances from any line through the centroid is the orthogonal least squares line, and the
largest sum of squared distances will be the perpendicular line.

Employing the power of the orthogonal regression line, our proposed measurement of linearity,
Q2, will compare the minimum and maximum sum of squared orthogonal distances and will ensure
that Q2 is rotationally invariant - a feat which R2 could not perform.

3 Developing Q2 as the Measure of Linearity
Before defining Q2 as a measure of linearity, let’s first consider the definition and meaning of R2.
Assume we are given data points (xi, yi), and denote the means of the x-values and y-values by x̄ and

ȳ respectively. The sum of squares of deviations from the mean is SSyy =
n∑

i=1

(yi − ȳ)2 . If we let ŷi

be the predicted values at xi from the vertical linear regression line, the sum of squares of the errors

from the regression line are SSE =
n∑

i=1

(yi− ŷi)
2 . We then define R2 =

SSyy − SSE

SSyy

= 1− SSE

SSyy

.

In calculating R2, we use only the data at our disposal to make predictions and use the mean of the
y-values, ȳ, as the predicted y-value for any given x-value. In other words, we use the line y = ȳ
to make predictions. Then SSyy is the sum of squared vertical distances from our data points to the
line y = ȳ and SSE is the sum of squared vertical distances from our data points to the vertical
regression line. Thus, SSyy − SSE is the reduction in the sum of squared vertical distances by
using the regression line, and, therefore, R2 is the percentage reduction in the sum of squared vertical
distances by using the regression line from the sum of squared vertical distances using the line y = ȳ.

If we wish to develop a linearity measure, which we call Q2, it should have properties paralleling
those of R2 for vertical regression.

1. The value of Q2 should lie between 0 and 1.

2. If Q2 ≈ 0, there should be very little confidence that the data are linear.

3. If Q2 ≈ 1, the data values are very linear (close to the orthogonal regression line).

4. The value of Q2 should be invariant under rotation of the data about the centroid, since the
linearity of the data is independent of rotation.

Let’s consider two examples below. In Data Set 1, the data points do not appear to be linear while
in Data Set 2, the data points appear to be well represented by a line. Therefore, we would expect the
value of Q2 to be smaller for Data Set 1 than 2. Hence, Data Set 2 should have a larger percentage
improvement of the sum of squares over the comparison line (defined below), Data Set 1 will have a
negligible improvement in the sum of squares over the comparison line.
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Figure 3: Data Sets 1 and 2

4 Defining Q2

Based on the interpretation of R2 and the four desired properties, we define Q2 in the following
manner:

Q2 is the percentage reduction in the sum of squared orthogonal distances using the or-
thogonal regression line as opposed to using the line perpendicular to the orthogonal
regression line through the centroid of the data.

In order to generate a formula for Q2, assume we have data points (xi, yi) and define the sum of
the squared variances and the covariance as:

SSyy =
n∑

i=1

(yi − ȳ)2, SSxx =
n∑

i=1

(xi − x̄)2, and SSxy =
n∑

i=1

(xi − x̄)(yi − ȳ).

In [3], we find that if y = β1x+ β0 is the orthogonal regression line, then

β1 =
SSyy − SSxx +

√
(SSyy − SSxx)2 + 4SSxy

2SSxy

and β0 = ȳ − β1x̄

.
This demonstrates that the orthogonal regression line can be calculated in closed form from the

data alone. This important point will later be discussed in more detail.
Now, let (x̂i, ŷi) be the point on the orthogonal regression line closest to (xi, yi) and (x̃i, ỹi) be

the point on the line perpendicular to the orthogonal regression line through the centroid closest to
(xi, yi) (See Figure 2). We can now define

SSorth =
n∑

i=1

{
(ŷ − yi)

2 + (x̂− xi)
2
}

and SSperp =
n∑

i=1

{
(ỹ − yi)

2 + (x̃− xi)
2
}
.

Then Q2 =
SSperp − SSorth

SSperp

= 1 − SSorth

SSperp

.
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5 Applying Q2 to Data Sets
Figure 4 demonstrates the orthogonal least squares regression line (OLSR Line) and comparison line
(Comp Line) for Data Sets 3, 4, and 5 with the associated values of Q2 and R2. Notably, as might be
expected, the low values for Q2 demonstrate that Data Sets 3 and 4 are quite nonlinear and the high
value for Q2 for Data Set 5 reveals that Data Set 5 is very linear, even though the value of R2, based
on the vertical least squares regression line (VLSR line), is very low. Notice that Data Set 3 is the
same as Data Set 1, and Data Set 5 was generated by rotating Data Set 2 around the centroid until the
orthogonal regression line is almost vertical. The value of Q2 is the same for Data Sets 2 and 5 even
though the value of R2 is lower for Data Set 5 (R2 = 0.00) than Data Set 2 (R2 = 0.94). So, we verify
that Data Set 2 is more linear than Data Set 1 as reflected by the higher Q2 value.

Figure 4: Data Sets 1 and 2 with regression and comparison lines

At this point, the reader might wonder if there is any significant value to Q2 over the well-known
R2. Let us again consider Data Set 5 in Figure 4. We immediately recognize that the value of R2 is
quite low, despite the data being quite linear. (We later discuss why Q2 = 0.71 is considered “low”.)
Furthermore, the vertical least squares regression line notably departs from the trend of the data. In
fact, the steeper a data trend becomes, the worse the vertical least squares regression line represents
the trend in the data [2]. However, the orthogonal least squares regression line better demonstrates
the trend of the data and the value of Q2 does not change regardless of the rotation of the data.

6 Experimenting with an Applet
To enhance the reader’s experience, we have provided a dynamic applet to accompany the reading
and assist the reader to further investigate this topic and glean additional insights. In order to open
the applet, you may need the latest version of the free software Maple Player.

To use the applet, first click on “Click to Initialize”. Second, use the slider to adjust the dispersion
of the random points. Third, from the drop-down menu, select the number of points desired in the
data plot. Fourth, select if you wish your points to be randomly generated or randomly perturbed
about a randomly selected line. Fifth, using the check boxes, select if you wish to see the vertical or
orthogonal regression lines or both. Select radians or degrees for an angle by which to rotate the data.
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You can now drag the needle on the rotation tool to rotate the data about their centroid and observe
the effects on the values of R2 and Q2. If the data are too compressed or land outside of the viewing
screen, you can use the slider to zoom in or out of the graph to better see the data.

Here are some points to observe:

1. The orthogonal regression line rotates precisely with the data and the value of Q2 remains
invariant in respect to the angle of rotation.

2. The vertical regression line does not rotate precisely with the data and avoids being too steep and
the value of R2 changes in respect to the rotation of the data. At times, the vertical regression
line quite poorly represents the trend in the data.

3. Under some conditions, the orthogonal and vertical regression lines are quite close. This seems
to occurs when the trend of the data is nearly horizontal.

4. It seems that R2 is maximized when the rotated data has a trend with a slope relatively close to
±1.

The reader can use the applet to investigate other ideas posed in this paper. Through experimenting
with this applet, it is anticipated that introductory statistics students will come to better understandQ2

as well as the R2 value that they had previously encountered. Instructors can use the applet to have
students investigate the ideas posed above along with others. Altogether, the applet will convince the
user of both the distinction between Q2 and R2 and the value of Q2 as a measure of the linearity of
the data.

7 Justification of the Properties of Q2

1. Since SSorth and SSperp are the minimum and maximum sum of squared distances respectively,

0 ≤ SSorth

SSperp

≤ 1 , so 0 ≤ Q2 ≤ 1 .

2. If Q2 ≈ 0, then SSorth ≈ SSperp , so all lines through the centroid have effectively the same
sum of squared distances so the orthogonal regression is no better fit than any other line through
the centroid. This means the data points are approximately circular.

3. If Q2 ≈ 1, then SSorth << SSperp , which means the orthogonal regression line is a signif-
icantly better fit than the perpendicular line suggesting the data points are very close to the
orthogonal line and, hence, are highly linear.

4. Since the calculation of Q2 uses the orthogonal regression line and that line is invariant under
rotation, the value of Q2 is also invariant under rotation.

8 Is Q2 = 0.71 low?
When R2 = 0.71 , one would often say that the vertical linear regression quite well represents the
data. However, we must remember that R2 is the measure of the quality of the vertical regression line
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in comparison to y = ȳ (the horizontal line through the centroid of the data) and that y = ȳ would
rarely be a line of worst fit. Q2, however, is the comparison of the line of best fit to the line of worst
fit. Thus, Q2 will generally be greater than R2 (as shown in Figure 4).

Herein lies a problem with both Q2 and R2: How do we interpret the specific value? There is no
universal agreement on which values of R2 imply a strong, medium or weak relationship, as many
different factors are involved. There is a similar danger to Q2, to say that a value above, say, 0.9
would indicate a strongly linear data set or that it is twice as linear as a data set with a Q2 value of
0.45. Nonetheless, we can recognize that as Q2 approaches 1, the data are more linear and that a
higher value represents data that is more linear than a lower value. It can be argued that the ranges
of low, medium, and high values for Q2 will, in the future, be determined more by the application or
relationship being investigated and the desire of the investigator than by some prescribed definition
for these ranges.

9 Discussion, Implications, and Conclusion
Determining how a given curve or a given set of points resemble a curve of a particular type is a
problem that has been actively studied. Facial recognition is an application that requires one to find
the best match of an attribute (ear shape, facial profile, etc ...) from among a set of candidate shapes.
In [5], the authors describe a measure of linearity for a 2-d curve of unit length by computing the sum
of the Euclidean distances between the endpoints and the centroid of the curve.

Our paper describes a measure to specifically determine how close a set of points in two dimen-
sions is to a line. In [6], the authors describe other measures of linearity for a two-dimensional data set
that are both translationally and rotationally invariant. The average orientations method computes the
normal direction to the line through two random points and compares the average of these directions
with the normal direction to the angle of orientation of the data set. The triangle heights algorithm
takes three random points and computes a normalized height of the triangle formed by the three points
and averages over many triangles. Both of these methods rely on samples of points rather than looking
at all data values, so their value will depend on the samples chosen. The rotation/correlation method
rotates the data so the angle of orientation is 45o, and computes the Pearson correlation coefficient
of the rotated data. Then it computes the correlation coefficient if the data is rotated another 90o and
chooses the larger of the two values. A number close to 1 indicates linearity. Our method utilizes
fewer calculations. Altogether, our measure of linearity seems to have some advantages over other
extant measures.

This problem ofR2 not being rotationally invariant is another reason why it is important to always
look at the scatter plot of the data before interpreting its value, aside from potential outlier effect and
the implications derived from an understanding of the source and nature of the data. In the future, it
will be interesting to investigate the sensitivity of Q2 to outliers compared to R2.

If we return to our original question, where we were investigating the debris field of a crash of
an unmanned aircraft and were searching for a particular artifact amongst the debris, we can see we
have made some progress on a solution. The orthogonal regression line is the best approximation to
the direction of impact to center the search, and the value of Q2 is a measure of the spread of the
debris from the impact direction. A high value of Q2 would indicate a debris field close to the impact
direction and the search should remain close to the impact line. A low value of Q2 would indicate a

185



The Electronic Journal of Mathematics and Technology, Volume 14, Number 3, ISSN 1933-2823

debris field with a larger spread from the impact direction, and the search should expand further from
the orthogonal regression line.

It is important to clearly recognize one more aspect of Q2. We have used Q2 in respect to an
orthogonal regression, because the orthogonal least squares regression line rotates appropriately with
the data and Q2 is rotationally invariant. However, much more significantly, since Q2 was calculated
in closed form based on the data alone, Q2 can be recognized as generalizable to determine the
linearity of any data set irrespective of the assumption of error in the measurement of the data in
any direction. Thus, whether the recognized possible errors in measurements in a data set are in the
y-direction (befitting a vertical regression), in the x-direction (befitting a horizontal regression), in
both directions with equal variances (befitting an orthogonal regression), or in both directions with
variances in a constant ratio not equal to 1 (befitting a Deming least squares linear regression, see
[4]), Q2 provides an applicable measure of the linearity of the data set.

Upon being introduced to the notion of Q2, some student may naturally ask “Is Q2 always better
than R2?” This question demonstrates some lingering misconceptions regarding R2. These measures
are of different characteristics: Q2 is a measure of the linearity of the data set, and R2 is a measure of
the quality of the linear model representing the data. Rather than seeing one measure as superior to
the other, we hope that students can recognize the complementary nature of the two measures. While
we have previously stated that R2 is neither a measure of the linearity of the data nor rotationally
invariant, the greatest weakness in R2 lies in when it is inappropriately employed or interpreted.
Similarly, Q2 can suffer from similar weaknesses when it is misinterpreted and misapplied.

Statistics instructors can provide data sets and have students use Q2 to determine the linearity of
each set. Then, as an open ended discussion, students can debate which data sets, based on their
respective Q2 value, warrant performing a linear regression and determining the value of R2. As part
of this discussion, they can debate ranges for which Q2 could be considered low, medium, and high,
and at what value is it justified that the data warrants a linear regression.

Measuring the linearity of a set of data points taken from a curve has been an important part of
image processing. Various measures for this were compared in [6]. As in this paper, it seems that one
of the greatest benefits of Q2 is for comparing two data sets to see which is more linear rather than
trying to quantify how linear a particular data set may be. An interesting extension to this investigation
may be to modify this calculation to determine how linear a set of points in n-dimensional space may
be. While this paper proposes a measure for the linearity of a data set, the future may produce rich
and valuable applications of this measure to the fields of pattern recognition and computer science.
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